Acremolactone A, a Novel Herbicidal Epoxydihydropyranyl γ-Lactone from Acremonium roseum I4267

Sir:

Only a few herbicidal substances are found from microorganisms: some of these are isolated from phytopathogenic fungi and others by screening from other microorganisms, mainly Streptomyces. In addition, a large number of them include nitrogen atom(s) in the molecule regardless of their structural diversity¹⁾. In our search of new plant growth regulators from fungi, we found a potent herbicidal substance in a culture broth of Acremonium roseum I4267²). It had no nitrogen atoms in the molecule and showed non-selective strong herbicidal activity against harmful weeds: particularly its pre-emergence herbicidal activity against crabgrass (Digitaria adscendens Henr.) and smartweed (Polygonum blumei Meisn.) was 9 to 10 on evaluating by a zero to 10 (complete killing) rating system at the dosage of 1.0 kg/ha, herbicidal activity which was higher than that of synthetic herbicides such as alachlor³⁾. The present paper reports the isolation and structural determination of an unprecedented herbicidal compound from the culture filtrate of this fungus. This compound named acremolactone A (1, Fig. 1) possesses a novel epoxydihydropyran nucleus.

The fungus was shake-cultured in a medium containing glucose 4%, corn starch 2%, soybean meal (Nissin) 2%, Pharmamedia (Traders Protein) 2% and CaCO₃ 1% at 25°C for 2 days and successively surface-cultured for 14 days. The culture filtrate (ca. 3 liters) obtained by filtration was extracted with EtOAc at pH 9.0, and the extract (ca. 2g) was immediately separated by flash column chromatography using Wako gel FC-40 silica gel and *n*-hexane - EtOAc (1:1, v/v) to give colorless crystalline 1 (90 mg). 1 had mp $123.5 \sim 124.0$ °C (benzene-EtOAc), $[\alpha]_D^{20} + 68^{\circ}$ (c 0.13, MeOH) and molecular formula $C_{26}H_{34}O_8$ [HR-FAB-MS m/z 497.2151 (M+ Na)⁺; calcd for $C_{26}H_{34}O_8Na$, 497.2149]. It gave a triacetate on acetylation with acetic anhydride and pyridine, which showed no hydroxyl IR bands. Three ¹H NMR signals in the spectrum of the triacetate had acetylation shifts $[\delta (CDCl_3, JHz) 5.661 (H-11', 4.5, 2,$ 2), 5.592 (H-3, br s) and 4.925 (H-5', 12.5, 4.4), cf. Table 1]. These data indicated the presence of three secondary hydroxyls and the absence of tertiary hydroxyls. Its IR band (1757 cm⁻¹ in a CHCl₃ solution) and ¹³C NMR

signal [δ 179.19 (C-1)] due to a carbonyl function (Table 1) suggested the presence of a γ -lactone ring in the molecule. Accordingly three oxygen atoms remaining unassigned in 1 were assignable to ether oxygen(s) and/or epoxy one(s). ${}^{1}\text{H}$ - ${}^{1}\text{H}$ and ${}^{1}\text{H}$ - ${}^{13}\text{C}$ COSY and decoupling experiments (long-range couplings from H-5 to H-3 and H-9) on 1 revealed three partial structures of C-3′ \sim C-2 \sim C-4 (C-9) \sim C-8 (A), C-5′ \sim C-8′ (B) and C-11′ \sim C-14′ (C) (Fig. 2), which included three secondary hydroxyl groups. Correlations among ${}^{1}\text{H}$ and ${}^{13}\text{C}$ NMR signals of 1 in one-bond relationship were determined by DEPT and ${}^{1}\text{H}$ - ${}^{13}\text{C}$ COSY (Table 1).

The partial structure A had a trisubstituted double bond in the side chain and its configuration was assigned as E on the basis of chemical shift of the methyl (C-9) and an NOE observation between H-6 and H-9. HMBC cross peaks from H-2 to C-1 and C-3, from H-3 to C-1, from H-3' to C-2, C-3, C-4', C-5', C-7' and C-17' and from H-5' to C-4' and C-17', and COLOC ones from H-17' to C-3', C-4' and C-5', which connected the partial structures A to B, clearly showed that 1) the carbon C-4'

Fig. 1. Structures of acremolactone A (1) and its H₅IO₆-oxidation product (2), and H₅IO₆-oxidation mechanisms of 1 in H₂O/EtOH.

Fig. 2. Partial structures (——) A, B and C of acremolactone A (1), and NOE observations (→) on 1 in NMR spectrometry and its characteristic fragment ions (———) in MS.

 $(δ_C 88.06)$ had both a lactonic oxygen atom and the third methyl (C-17') of **1** and 2) carbons of C-1 (=O), C-2, C-3' and C-4' and an oxygen of (C-4')-O- formed the γ-lactone ring described above. In addition, HMBC cross peaks from H-1' to C-2', C-3' and C-7', from H-3' to C-1' and C-2', from H-8' to C-2' and C-7', and COLOC ones from H-7' to C-2' and C-6' revealed the presence of a trisubstituted vinyl ether group [-O-C-1' = C-2' (C-3')-C-7'] between the partial structures **A** and **B**. This vinyl ether moiety, which constructed the first six carbocyclic ring (C-2' \sim C-7') in **1**, was well interpreted from not only chemical shifts of H-1' (δ 5.877), C-1' (δ 138.58) and C-2' (δ 107.36)⁴) but also a long-range coupling from H-1' to H-7' (J = 2 Hz) and an NOE observation between H-1' and H-3'.

The partial structure C was extended to an epoxycyclohexenol residue [C- $10' \sim C-15'$ (C-16')] as the second carbocyclic ring moiety of 1 from HMBC cross peaks from H-11' to C-10', C-13' and C-15' and from H-14' to C-12', C-13' and C-15'. C-10' and C-15' were assigned to epoxy carbons from their chemical shifts (δ 64.01 and 62.99, respectively). Further DIF-NOE observations between Hb-14' and H-16' indicated that the fourth methyl (H-16') was attached at C-15' and located at the side of C-14' but not C-11'. Finally the last carbon C-9' (δ 86.0) remaining unassigned in 1, which gave HMBC correlations with H-1' and H-8', had to connect directly to C-10' of the second carbocyclic ring to give the novel epoxydihydropyran ring of 1. Chemical shifts of C-8' and C-9' (δ 58.51 and 86.0) were accountable for an epoxy and an epoxy ethereal carbon, respectively⁵⁾. Direct connectivity of the second carbocyclic ring (partial

Table 1. Spectral data and NMR assignments (in CD₃OD) of acremolactone A.

UV λ_{max} (MeOH) nm	End absorption
IR v_{max} (KBr) cm ⁻¹	3430, 1745, 1668, 1235,
	1163, 1093, 973, 904, 864,
	807, 767, 685
EI-MS m/z (%)	474 (M ⁺ , 0.4), 456 (2.0),
	362 (1.2), 301 (4.5), 166 (45),
	137 (53), 119 (63), 112 (24),
	109 (71), 97 (71), 55 (100)

Carbon No.	$\delta_{\rm C}^{\;\;a} \; ({\sf DEPT})$	$\delta_{\rm H}{}^{\rm b}$ (mult., $J{ m Hz}$)
1	179.19 (C)	
. 2	47.12 (CH)	3.093 (dd, 12, 2.4)
3	72.94 (CH)	4.504 (br s)
. 4	134.84 (C)	
5	125.26 (CH)	5.60 (br t, 7)
6	30.91 (CH ₂)	
7		$1.56 \sim 1.35 (2H, m)$
8	14.43 (CH ₃)	
9	14.36 (CH ₃)	* * * * * * * * * * * * * * * * * * * *
1′	138.58 (CH)	5.877 (d, 2)
2′	107.36 (C)	
3′	45.82 (CH)	3.003 (d, 12)
4'	88.06 (C)	
5′	74.13 (CH)	3.875 (dd, 12, 4.4)
6′	33.73 (CH ₂) a	1.860 (ddd, 12, 4.4, 4)
	b	1.44 (m) ^c
7′	29.89 (CH)	2.833 (br d, 12)
8′	58.51 (CH)	3.435 (d, 3.4)
9′	86.0 (C)	
10'	64.01 (C)	
11'	64.86 (CH)	4.382 (ddd, 4.5, 2, 2)
12'	126.58 (CH)	5.644 (dddd, 10, 4.5, 2.5, 2)
13'	125.04 (CH)	5.531 (ddd, 10, 4.5, 2.5)
14'	32.25 (CH ₂) a	2.517 (dddd, 19, 2.5, 2.5, 2)
		2.439 (dddd, 19, 4.5, 2, 2)
15'	62.99 (C)	
16′	21.06 (CH ₃)	1.313 (s)
17'	17.37 (CH ₃)	1.404 (s)

 $^{^{\}rm a}$ 100 MHz, $^{\rm b}$ 400 MHz, $^{\rm c}\delta$ (CDCl $_{\rm 3})$ 1.627 (ddd, 12, 12, 12).

structure C) to the epoxydihydropyran one was confirmed by an observation of DIF-NOE between H-16' and H-8'. The structure of 1, therefore, was elucidated as 1 shown in Fig. 1.

This novel structure of 1 was also supported by (HR-)EI-MS and DIF-NOE experiments. Characteristic fragment ions of 1 at m/z 362 and 112 ($C_7H_{12}O$), and 166 ($C_9H_{10}O_3$) in the MS spectrum were well interpreted by MacLafferty rearrangement in the side chain and

retro-Diels-Alder fragmentation in the epoxydihydro-pyran ring, respectively (Fig. 2). These fragment ions of m/z 362 and 166, further, were well explained by their shift of two mass unit in the EI-MS spectrum of 12',13'-dihydro-1 [m/z 364 (0.4%) and 168 (54%)] which was prepared by catalytic hydrogenation of 1. Several NOE observations between partial structures A and B diagnostic for the structure of 1 were displayed in Fig. 2.

In order to chemically characterize the novel epoxydihydropyran nucleus of 1, its selective cleavage was tried and carried out satisfactorily by H₅IO₆-oxidation. The oxidation product from 1 (10 mg) was purified by silica gel column chromatography to afford a colorless solid [2, 7 mg, FAB-MS m/z 491 (M+H)⁺]. It gave a new ¹³C NMR signal of an additional carbonyl at δ 166.14 along with a strong IR-carbonyl band at v_{max} (CHCl₃) 1754 cm⁻¹, suggesting the formation of a vinyl ester group in the molecule. Its NMR spectra, further, demonstrated characteristic signals of a hemiacetal group at $\delta_{\rm C}$ (CDCl₃) 102.6 and $\delta_{\rm H}$ 4.95 (d, J=3 Hz). Thus its structure including a vinyl ester group and a hemiacetal group was elucidated as 2 shown in Fig. 1 by ¹H-¹³C COSY and HMBC: cross peaks in the latter were observed from H-1' (δ 6.759, s) to C-2' (δ 123.89), C-3' $(\delta 137.90)$, C-7' $(\delta 40.64)$ and C-9' $(\delta 166.14)$, from H-5' $(\delta 4.168, d, 6)$ to C-3' and C-7' and from H-8' $(\delta 4.953, d)$ d, 3) to C-5' (δ 79.62), C-6' (δ 24.48) and C-7'. The other NMR signals of the carbocyclic ring moiety having the hemiacetal ring were also assigned as H-3' δ 2.792 (d, J = 7 Hz], Ha-6' [δ 2.250 (ddd, 13, 6, 4)], Hb-6' [δ 1.590 (d, 13)] and H-7' [δ 3.243 (d, 4)], and C'-1 (δ 134.50), C-4' (δ 85.07) and C-8' (δ 102.57). This structure was also supported from a characteristic intense ion at m/z153 (27%) in the EI-MS spectrum which was generated from the acyl moiety (C-9' \sim C-16'). Reaction mechanism of the H_5IO_6 -oxidation of 1 is shown in Fig. 1^{††}. Acremolactone A, therefore, was determined to be the structure 1 as shown in Fig. 1. This is a new type of compound unprecedented for microbial metabolites⁶⁾.

2 showed no hypocotyl growth-inhibitory activity against Chinese cabbage seedlings at concentrations less than 300 ppm, whereas 1 showed complete inhibition at a concentration of 1 ppm. Accordingly the epoxy-dihydropyran nucleus in 1 is considered to play an important role for its herbicidal activity.

We have recently reported that this fungus produces

acremoauxin A (3), a novel arabitol derivative of 2-(indolyl-3)propionic acid, having potent auxin activity⁷⁾. The fungus produced 3 but not 1 on shake-culturing in a glucose - malt extract medium. A few minor metabolites structurally related to 1 were also detected by TLC from the filtrate of the surface culture using the medium described above.

Acknowledgments

The authors are grateful to Mr. OSAMU IKEDA of the Research Center of Mitsubishi Chemical Corporation for herbicidal tests of acremolactone A.

Takeshi Sassa* Hiroyuki Kinoshita Manabu Nukina Takeyoshi Sugiyama[†]

Department of Bioresources, Faculty of Agriculture, Yamagata University, Tsuruoka 997-8555, Japan

† Division of Life Science, Graduate School of Agricultural Life Science, Tohoku University, Aoba-ku, Sendai 991-8555, Japan

(Received July 1, 1998)

References

- 1) KURAMOCHI, H. & K. YONEYAMA: Research and development of herbicides in the past and in the future. Chem. Regulation of Plants 30: 175~184, 1995
- HARUKI, E. & T. MIKAWA: Studies on herbicidal metabolites produced by fungi. Mitsubishi Kasei R & D Review 5: 40~46 1991
- YONEYAMA, K.; N. ICHIZEN, M. KONNAI, T. TAKEMATSU, K. USHINOHAMA & T. JIKIHARA: Herbicidal activity of N-[(R)-2,3-epoxypropyl]-N-[(R)-α-methylbenzyl]-2,4,6-trimethylbenzenesulfonamide, UY-510. Weed Research (Japan) 28: 285~290, 1983
- SPINO, C.; G. LIU, N. TU & S. GIRARD: The diene-transmissive [4+2]-cycloaddition strategy: stereoselective synthesis of advanced intermediates to quassinoids. J. Org. Chem. 59: 5596~5608, 1994
- 5) WIEMER, D. F.; L. K. WOLFE, W. FENICAL, S. A. STROBEL & J. CLARDY: Palmosalides A~C, new sesquiterpenoids from the Indian Ocean telestacean octocaral *Coelogorgia* palmosa. Tetrahedron Lett. 31: 1973~1976, 1990
- 6) HIGTON, A. A. & A. D. ROBERTS: Dictionary of Antibiotics and Related Substances. *Ed.*, B. W. BYCROFT, Chapman and Hall, London, 1988
- 7) NORIYUKI, Y. & T. SASSA: Synthesis of acremoauxin A, a new plant growth regulator produced by *Acremonium* roseum I4267. Agric. Biol. Chem. 54: 2681 ~ 2683, 1990

the Charactrization and stereochemistry of degradation products derived from 2 will be reported elsewhere.